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SUMMARY 

Selective breeding for low-methane ruminants is a viable solution for reducing agricultural 
greenhouse emissions, but requires phenotypic measures of methane. Methods for obtaining on-farm 
methane emission measurements are available but are expensive and laborious, whereas proxy traits 
may provide a more efficient and cheaper alternative. A rumen metagenomic profile (RMP) has 
recently been shown to be one suitable proxy for methane, as it is both predictive of, and genetically 
correlated with, methane-related traits. We describe a two-step approach for using RMP as a proxy 
trait to generate genomic breeding values of methane related traits from portable accumulation 
chambers (PAC). We illustrate the utility of this approach on a commercially reared sheep flock. 
Our sequence-based, low-cost approach is extremely robust and could be extended to other 
ruminants (i.e., cattle) and would have greater utility for large ruminants where measuring methane 
emissions is more difficult compared to sheep. 

 
INTRODUCTION 

The global livestock industry is actively developing mitigation tools to reduce methane 
emissions from ruminants to meet international agricultural greenhouse gas reduction targets. One 
mitigation tool that is currently available for industry is selective breeding but requires on-farm 
measures of methane, but obtaining direct on-farm measurements of methane emissions is expensive 
and laborious. One measurement technology that has successively been used commercially on-farm 
is portable accumulation chambers (PAC) with over 5,000 commercial measures being collected per 
year in sheep across New Zealand (Archer et al. 2023). However, infrastructure constraints and 
logistic challenges are limiting access for breeders and farmers to measure their flocks using PAC. 
Proxy traits can provide an inexpensive alternate that enable a larger number of phenotypic methane 
measures to be collected. One proxy that has previously been shown to be predictive of and 
genetically correlated with PAC methane traits is RMP (Bilton et al. 2024). This study builds on 
Bilton et al. (2024) by presenting an approach for incorporating RMP information into the 
generation of PAC methane breeding values that can be used in a selection index for breeding.  

 
MATERIALS AND METHODS 

Experimental animals and protocols applied in this study were approved by the AgResearch 
Ruakura (Hamilton, NZ) Animal Ethics committees (application number 2383). 

Animals and phenotypes. This study used 13,748 animals born between 2019 and 2023 from a 
commercial New Zealand sheep flock where all animals had been successfully genotyped (Table 1) 
and performance traits recorded. Methane emissions of a subset of these animals (1364 across all 
birth years) were measured using PAC at approximately 7-9 months of age following the standard 
protocol for PAC (Jonker et al. 2020). PAC data and additional animal information and 
measurements were downloaded from the Sheep Improvement Limited database (Newman et al. 
2000). The PAC methane trait used in this study was methane emissions in grams per day (CH4).      
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Table 1. Number of animals and phenotypes by year of birth 
 

Phenotype(s) Birth Year Total 
 2019 2020 2021 2022 2023  
PAC only 1631 2 236 252 233 886 
PAC + RMP  250   228 478 
RMP only     747 747 
Neither 3118 2649 2657 2032 1181 11,637 
Total 3281 2901 2893 2284 2389 13,748 

1Born 2019 animals had two rounds of PAC measurements, where measurements were 
taken two weeks apart 

 
Rumen sampling & metagenomic profiles. Rumen samples were collected from 975 born 2023 

rams at approximately 6 months of age via stomach intubation across two days of sampling. Animals 
were removed from feed in morning and afternoon batches, where each batch of animals was 
sampled over a five-hour period by two teams of technical staff when the animals were between 1 
hour and 6 hours off feed. Rumen samples were preserved using the TNx2 solution (Budel et al. 
2022) and sequenced using restriction enzyme-reduced representation sequencing (Hess et al. 2020) 
with PstI across multiple libraries. Libraries were sequenced with single end reads (1x100) on an 
Illumina NovaSeq6000 generating 26 Gb of data per 368 sample library. The reference-free pipeline 
developed by Hess et al. (2020) was used to generate a count matrix of tags (unique raw sequences 
trimmed to 65 bp) and a cohort adjustment based on year of birth, time off feed group (hour intervals) 
and sample date was applied. An additional 250 animals (born 2020) also had RMPs that formed 
part of the dataset of the Bilton et al. (2024) study. A microbial relationship matrix (MRM) was 
constructed using the 4585 animals from the Bilton et al. (2024) study (that also had PAC and 
genotype data) plus the 975 rams born 2023 from this study using the approach described in Hess et 
al. (2020). 

Animal genotyping. All animals were genotyped using a variety of nested SNP chips, where 
13,232 common SNPs across all chips were retained for analysis. The software KGD (Dodds et al. 
2015) was used to construct a genomic relationship matrix (GRM) based on VanRaden method 1, 
where each pairwise relationship was computed using only SNPs with non-missing data. 

Statistical analysis. Predictions of methane from RMP for the 975 born 2023 rams were 
performed using a linear mixed model approach. The model used was of the form: 

yijkl = μ + cgj + aodk + brrl + bdevi + mi + eijkl     (1) 
where μ is the overall mean, cgj is the jth contemporary group based on the combination of flock, 
birth year and sex, aodk is the effect of the kth age of dam (2, 3, 4+), brrl is the effect of the lth 
birth/rear rank group (1/1+, 2/2, 2+/1, 3/2, 3+/3+), bdevi is the birth deviation from the flock and 
birth year mean, yijkl denotes the trait (CH4), m ~ N(0,σm

2M), m = (m1,…,mn)′, e ~ N(0,σe
2I), e = 

(e1jkl,…,enjkl)′, M denotes the MRM, and I is the identity matrix. The microbial values, mi, are 
referred to as the “RMP methane trait” as it provides an estimate of yijkl after adjusting for fixed 
effects. Model (1) was fitted on a training set consisting of all 4,585 animals from the Bilton et al. 
(2024) study and predictions of the microbial values (𝑚𝑚�𝑖𝑖) were made on the 975 born 2023 rams 
with RMP profiles. 

To incorporate RMP information into the breeding values for the PAC methane trait, a bivariate 
model of the form:  

y* = Xb + Zu + e        (2) 
was used, where y* = (𝐦𝐦� ,y)′, X = ((X1,0)′,(0,X2)′), b = (b1,b2)′, Z = ((Z1,0)′,(0,Z2)′), u = (u1,u2)′, e 
= (e1,e2)′, X1, X2 and Z1, Z2 are the incidence matrices for the fixed and random effects respectively, 
b1, b2 and u1, u2 are vector of fixed and random effects respectively, and e1, e2 are residual error 
terms. The model assumes that u ∼ MVN(0, G⊗B), where G denotes the GRM and B = ((σu1

2,σu12)′, 
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(σu12,σu2
2)′), and e ∼ MVN(0, I⊗C) where C = ((σe1

2,σe12)′,(σe12,σe2
2)′). Model (2) was fitted in 

ASReml 4.2 (Gilmour et al. 2015) using the qualifier “!BLUP 3” with prespecified variance and 
covariance values of σu1

2 = 0.243, σu2
2 = 0.469, σe12 = 0.242, σe1

2 = 0.417, σe2
2 = 1.802, σe12 = 0.252, 

which were obtained from the forward prediction analysis in Bilton et al. (2024). In addition, the 
fixed effects cgj, aodk, brrl, and bdevi were included in X2 whereas X1 only contained the overall 
mean. The bivariate model was fitted using all 13,748 animals from the flock (Table 1) under four 
scenarios of differing levels of phenotypic information. These were (a) PAC data from born 2019 to 
2022 (PAC (-b23)), (b) scenario (a) plus the RMP methane trait (PAC (-b23) + RMP), (c) all 
available PAC data (PAC all), and (d) all available PAC data and the RMP methane trait (PAC (all) 
+ RMP). The genomic estimated breeding values (gEBVs) for the PAC methane trait (û2) were 
extracted and examined across the four different scenarios.  
 
RESULTS AND DISCUSSION 

The pairwise comparison of the gEBV values for the 975 rams is shown in Figure 1a across the 
four scenarios with different phenotype information available for the born 2023 rams. The 
correlation between gEBVs with no phenotype measures (PAC (-b23)) with the gEBVs including 
the PAC measures (PAC (All)) for the born 2023 rams was 0.7, which was larger than the gEBV 
correlation of 0.63 between using only RMP (PAC (-b23) + RMP) with only PAC (All). However, 
gEBVs generated using only RMP (PAC (-b23) + RMP) or only PAC (PAC All) for the born 2023 
rams had a similar correlation (0.87-0.89) to the gEBVs generated using all the phenotypes (PAC 
(All) + RMP). Here, we are assuming PAC (All) + RMP provides the best gEBVs as it has the most 
phenotype information included. 

Figure 1. Pairwise comparison of gEBVs (A) values and (B) accuracies computed from the 
bivariate model using ASReml for the 975 born 2023 rams under four different scenarios of 
phenotype information available. The four scenarios are PAC data from born 2019 to 2022 (PAC 
(-b23)), PAC data from born 2019 to 2022 plus the RMP methane trait (PAC (-b23) + RMP), all 
available PAC data (PAC all), and all available PAC data and the RMP methane trait (PAC (all) + 
RMP). For plot A, the black solid line is the line of identity, the blue dashed line is the regression 
line, and the upper diagonals contain the correlation (Corr) and regression slope (Slope). For plot B, 
points are coloured based on if a ram only had a RMP (blue) or both a PAC and RMP measure (red), 
and the diagonals provide the mean accuracies. 
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The gEBV accuracies computed from ASReml are given in Figure 1B and show that using RMP 
information without PAC measures improves the mean gEBV accuracies from 0.36 (PAC (-b23)) 
and from 0.48 (PAC (All)) to 0.58 (PAC (-b23) + RMP) for the born 2023 rams with no PAC 
measures but were slightly lower than the mean accuracy of 0.62 when PAC measures were included 
(PAC (All) + RMP).  

These results indicate that RMP profiles would greatly improve gEBV accuracy for animals 
without PAC measures but only modest improvement for animals with a PAC phenotype. Hence, 
RMP could be used as an alternative method for obtaining PAC measures, enabling larger numbers 
of animals to be phenotyped across the industry. Nevertheless, a sufficient number of animals would 
need both a RMP and PAC measure for training and calibrating the prediction models.  
 
CONCLUSION 

In this study, we have provided a strategy for incorporating RMP information into the generation 
of gEBVs for PAC methane traits based on using a two-step bivariate modelling approach. RMP 
could provide farmers with another option for generating phenotypic methane measures to breed for 
low methane animals that is lower cost (approximately $60NZD per animal) compared to PAC 
($100NZD per animal). This would facilitate obtaining phenotypic measures of methane emissions 
for large number of animals and potentially enable faster genetic progress for methane traits. 
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